Xenon has greater inhibitory effects on spinal dorsal horn neurons than nitrous oxide in spinal cord transected cats.

نویسندگان

  • Y Miyazaki
  • T Adachi
  • J Utsumi
  • T Shichino
  • H Segawa
چکیده

UNLABELLED Xenon (Xe) suppresses wide dynamic range neurons in cat spinal cord to a similar extent as nitrous oxide (N2O). The antinociceptive action of N2O involves the descending inhibitory system. To clarify whether the descending inhibitory system is also involved in the antinociceptive action of Xe, we compared the effects of Xe on the spinal cord dorsal horn neurons with those of N2O in spinal cord-transected cats anesthetized with alpha-chloralose and urethane. We investigated the change of wide dynamic range neuron responses to touch and pinch by both anesthetics. Seventy percent Xe significantly suppressed both touch- and pinch-evoked responses in all 12 neurons. In contrast, 70% N2O did not show significant suppression in touch- and pinch-evoked responses. These results suggest that the antinociceptive action of Xe might not be mediated by the descending inhibitory system, but instead may be produced by the direct effect on spinal dorsal horn neurons. IMPLICATIONS Xenon (Xe) is an inert gas with anesthetic properties. We examined the antinociceptive effects of Xe and nitrous oxide (N2O) in spinal cord-transected cats. Our studies indicate that Xe has a direct antinociceptive action on the spinal cord that is greater than that of N2O.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xenon inhibits excitatory but not inhibitory transmission in rat spinal cord dorsal horn neurons

BACKGROUND The molecular targets for the promising gaseous anaesthetic xenon are still under investigation. Most studies identify N-methyl-D-aspartate (NMDA) receptors as the primary molecular target for xenon, but the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionic acid (AMPA) receptors is less clear. In this study we evaluated the effect of xenon on excitatory and inhibitory sy...

متن کامل

Effect of nitrous oxide alone or its combination with fentanyl on spinal reflexes in cats.

The effects of nitrous oxide alone and combination of nitrous oxide and fentanyl on spinal reflexes were studied in cats with transected spinal cord at the thoracic level. Nitrous oxide 33, 50 and 75% in oxygen depressed the amplitude of monosynaptic reflexes in a dose-dependent manner, but exerted little effect on polysynaptic reflexes. The addition of fentanyl 2.5 microgram kg-1 during the ad...

متن کامل

Actions of norepinephrine and isoflurane on inhibitory synaptic transmission in adult rat spinal cord substantia gelatinosa neurons.

Volatile inhaled anesthetics and nitrous oxide (N2O) are often used together in clinical practice to produce analgesia. Because the analgesic effect of N2O is, at least in part, mediated by norepinephrine (NE) release in the spinal cord, we examined the interaction between isoflurane (ISO) and NE in the adult rat spinal cord with respect to central nociceptive information processing. The effect...

متن کامل

Systemic morphine inhibits dorsal horn projection neurons through spinal cholinergic system independent of descending pathways.

Cholinergic circuitry and muscarinic receptors within the spinal cord have been proposed to contribute to the analgesic effects of systemic morphine. In this study, we determined whether the descending pathways are involved in the inhibitory effect of systemic morphine on dorsal horn projection neurons mediated by activation of the spinal cholinergic system. Single-unit activity of dorsal horn ...

متن کامل

Role of nitric oxide and Jun N-terminal kinase in the development of dark neurons in the dorsal horn of the spinal cord following induction of inflammatory pain

Introduction: Dark neurons which their morphological characteristics are consistent with those of cells undergoing apoptosis, are generated as an acute or delayed consequence of several pathological situations. The present study was designed to evaluate whether inflammatory pain regarding the role of NO and JNK lead to the formation of dark neurons in the dorsal horn of the lumbar spinal cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesia and analgesia

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 1999